banner

Publications

Filter by

Enhanced Arnold's Cat Map-AES Encryption Technique for Medical Images

Human's health information is considered momentous information, which is represented in medical systems. The amount of medical image information available for analysis is increasing with the modern medical image devices and biomedical image processing techniques. To prevent data modification from unauthorized persons from an insecure network, medical images should be encrypted efficiently. In this

Mechanical Design

Prediction of Internal Flow's Characteristics around Two Cylinders in Tandem using optimal T-S fuzzy

Laminar unsteady incompressible flow past two-cylinders in tandem is investigated numerically. The vortex shedding over the cylinders' arrangement is studied at various Reynolds numbers and blockage ratios while changing the distance between the two cylinders. The output from the numerical simulations is used to feed different regression methodologies to find the optimal approach for the proposed

Mechanical Design

Efficient Finite Element Modeling of Complex HVAC Applications

A new Finite element model for HVAC applications is introduced. The model incorporates flow turbulence, buoyancy effects and unsteadiness. Also, the model accommodates complicated boundaries due to complex geometries and perforated tiles. Experimental validation is provided and extensive results for flow and temperature contours are presented. Temporal and spatial resolution prove that the model

Mechanical Design

Comparative Study of Nusselt Number Correlations for Hitec Molten Salt

Molten salt has been realized as a potential candidate as a clean non-pollutant heat transfer fluid for concentrated solar power plants because of its high heat capacity and broad ranges of operational temperatures. In this study, the Nusselt number of the commercially known Hitec molten salt is numerically assessed, using k-ϵ model turbulence model with non-equilibrium wall functions, for the

Mechanical Design

Cold flow numerical simulation inside local pottery furnace for different designs for the air inlet

One of the many pleasures of living in Egypt is having the opportunity to visit places like a village called Tunis in El-Fayoum governorate which is a touristic village and export art and handicraft such as Pottery for 3-4 decades. The clay processing in the traditional pottery industry contains several stages. The process and quality of the pottery have to be improved to reduce pollution and the

Healthcare
Software and Communications
Agriculture and Crops

Two-Degree of Freedom Proportional Integral Derivative (2-DOF PID) Controller for Robotic Infusion Stand

Infusion Stand is one of the medical supportive tools in the field of biomedical that assist in holding and carrying medications to patients via intravenous injections. Mobilization of Infusion Stand from a place to another place is necessary not only for the patients itself but also for the nurses. Therefore, this leads to not only uneasiness but also inconvenience for both parties. Therefore, to

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

Finite element analysis of pulsatile blood flow in elastic artery

New hybrid Eulerian/Lagrangian model is presented accounting for the two-way coupling between the pulsating blood flow and the artery deformability. The Streamline-Upwind/Petrove--Galerkin (SUPG) finite element technique is used to treat for the convective nature of the momentum equation. The deformability of the artery walls is accounted for by treating the wall as an elastic beam under

Healthcare
Mechanical Design

The effect of the geometric and thermal parameters on the thermal stresses during the passive cooling of printed circuit boards

The effect of components' thermal properties in addition to their geometric configuration on the developed thermal stress in a model printed circuit board (PCB) is investigated. This effect is quantified through three parameters, the average normalized temperature gradient, maximum normalized temperature gradient and the uniformity factor. It is found that the effect of the geometric configuration

Energy and Water
Mechanical Design

An Asymptotically Adaptive Successive Equilibrium Relaxation approach for the accelerated convergence of the Lattice Boltzmann Method

A new approach is proposed to accelerate the convergence of the Lattice Boltzmann method for steady-state problems. The proposed approach uses an adaptive relaxation frequency to accelerate the convergence by assigning more weight to selected parts of the standard algorithm corresponding to different phases of the convergence to the steady-state solution. The proposed algorithm is simple

Energy and Water
Mechanical Design

Numerical simulation of Oldroyd-B fluid with application to hemodynamics

Oldroyd-B viscoelastic fluid is numerically simulated using the stabilized Galerkin least squares finite element method. The instabilities due to the connective nature of the Oldroyd-B model is treated using the discrete viscous elastic split stress method. The model is used to study the behavior of the flow of blood through an abdominal aortic segment. The results show that the viscoelastic

Energy and Water