banner

Filter by

ARQ security in Wi-Fi and RFID networks

In this paper, we present two practical ARQ-Based security schemes for Wi-Fi and RFID networks. Our proposed schemes enhance the confidentiality and authenticity functions of these networks, respectively. Both schemes build on the same idea; by exploiting the statistical independence between the multipath fading experienced by the legitimate nodes and potential adversaries, secret keys are

Circuit Theory and Applications
Software and Communications

ARQ secrecy over correlated fading channels

In this paper, we develop novel Automatic Repeat reQuest (ARQ) key sharing protocols for correlated fading channels. In particular, a novel role of "dumb antennas" in overcoming the negative impact of spatial correlation, on the achievable secrecy rates , is unveiled. We further develop an adaptive rate allocation policy which achieves higher secrecy rates by exploiting the channel temporal

Circuit Theory and Applications
Software and Communications

A new signaling technique for a low power on-chip SerDes transceivers

This paper represents a new self timed signaling technique for low power SerDes transceiver. A three level coding technique enables extracting the clock from the data using simple phase detector rather than using complex power hungry blocks such as Clock Data Recovery (CDR) or a Phase Locked Loop (PLL). This SerDes transceiver was implemented using 90nm TSMC technology. The transmitter serializes

Circuit Theory and Applications

Fully integrated fast response switched-capacitor DC-DC converter using reconfigurable interleaving

A novel double-bound hysteretic regulation scheme to control multi-phase interleaved Switched-Capacitor DC-DC converters is presented. The control scheme adjusts the number of interleaved phases with the SC converter's switching frequency to significantly reduce the required operating frequency of the control comparator, enabling the practical application of hysteretic control with large number of

Circuit Theory and Applications

Temperature-aware adaptive task-mapping targeting uniform thermal distribution in MPSoC platforms

As on-chip integration increases, the thermal distribution becomes spatially non-uniform and varies based on the power dissipation. In this paper, we introduce a temperature-aware task-mapping algorithm to prevent hotspots and achieve a highly uniform thermal distribution using adaptive multi-threshold values. The algorithm monitors the temperature of the cores, swaps tasks when the temperature of

Energy and Water
Circuit Theory and Applications

Towards optimum condition assessment policies for water and sewer networks

With ageing water and sewer infrastructure in North America, assessing the condition of these assets has received increased attention in the past few years. Condition assessment is an integral component in any asset management program. Determining the condition of buried infrastructure tends to be more cumbersome, costly and error-prone compared to other surface infrastructure like roads and

Artificial Intelligence
Energy and Water
Software and Communications

Two-dimensional front-tracking model for film evaporation

To understand the physical process involved in film evaporation, a new numerical model is created using coupled quadratic finite element formulation of the conservation equations. The heat transport equation is solved in the three different phases (solid, liquid and vapor) while the Navier-Stokes equation are solved in the two fluids. The gradient discontinuity at the liquid vapor interface

Energy and Water
Circuit Theory and Applications
Mechanical Design

Symbol based log-MAP in concatenated LDPC-convolutional codes

In this paper we study the use of a high rate Low Density Parity Check (LDPC) codes in concatenated coding structures. Specifically, we use the LDPC code as an outer code, with a convolutional code as an inner code. We decode the convolutional code using a symbol based Log-MAP (Maximum a posteriori probability) decoder, and feed the soft outputs of this decoder into a non-binary Galois Field LDPC

Software and Communications

A deterministic large-scale device-free passive localization system for wireless environments

The widespread usage of wireless local area networks and mobile devices has fostered the interest in localization systems for wireless environments. The majority of research in the context of wirelessbased localization systems has focused on device-based active localization, in which a device is attached to tracked entities. Recently, device-free passive localization (DfP) has been proposed where

Software and Communications
Mechanical Design

Power control for constrained throughput maximization in spectrum shared networks

We investigate power allocation for users in a shared spectrum network. In such a network, the primary (licensed) users communicate under a minimum guaranteed quality of service (QoS) requirements, whereas the secondary users opportunistically access the primary band. Our objective is to find a power control scheme that determines the transmit power for both primary and secondary users so that the

Software and Communications