banner

Filter by

Efficient Finite Element Modeling of Complex HVAC Applications

A new Finite element model for HVAC applications is introduced. The model incorporates flow turbulence, buoyancy effects and unsteadiness. Also, the model accommodates complicated boundaries due to complex geometries and perforated tiles. Experimental validation is provided and extensive results for flow and temperature contours are presented. Temporal and spatial resolution prove that the model

Mechanical Design

Fractional-Order Generalized Gene Regulation Model CCII-Based Practical Emulator

This paper presents a practical emulator of a generalised fractional-order model for gene regulation process, in an analog platform. The presented emulator is based on the second-generation current conveyor (CCII) and implemented using AD844 chips. The emulator realises a proposed generalised mathematical model for gene expression. The model sums up three different single models; the constitutive

Circuit Theory and Applications

Fractional-Order Control Scheme for Q-S Chaos Synchronization

In this paper, a fast control scheme is presented for the problem of Q-S synchronization between fractional chaotic systems with different dimensions and orders. Using robust control law and Laplace transform, a synchronization approach is designed to achieve Q-S synchronization between n-D and m-D fractional-order chaotic systems in arbitrary dimension d. This paper provides further contribution

Circuit Theory and Applications

Comparative Study of Nusselt Number Correlations for Hitec Molten Salt

Molten salt has been realized as a potential candidate as a clean non-pollutant heat transfer fluid for concentrated solar power plants because of its high heat capacity and broad ranges of operational temperatures. In this study, the Nusselt number of the commercially known Hitec molten salt is numerically assessed, using k-ϵ model turbulence model with non-equilibrium wall functions, for the

Mechanical Design

Hybrid ARQ-CQI Feedback-Based Access Scheme in Cognitive Radio Networks

In this paper, we consider a cognitive radio (CR) network where the primary network's feedback information is utilized to develop an access scheme for the secondary network to exploit the underutilized primary spectrum resources. Secondary users (SUs) identify the spectrum opportunities by sensing the spectrum for primary users (PUs) activities and by listening to the PUs feedback. The feedback

Software and Communications

Extraction of bioimpedance phase information from its magnitude using a non-uniform Kramers–Kronig transform

A novel non-uniform Kramers–Kronig Transform algorithm for bioimpedance phase extraction is proposed and tested in this work. The algorithm error is studied and compared with a previously proposed phase extraction technique, also based on the Kramers–Kronig transform. Results using simulated datasets and experimental datasets confirm the excellent performance of the algorithm. © 2020, European

Circuit Theory and Applications
Agriculture and Crops

COVID-19 and Us!

[No abstract available]

Healthcare

Advance Interconnect Circuit Modeling Design Using Fractional-Order Elements

Nowadays, the interconnect circuits' conduct plays a crucial role in determining the performance of the CMOS systems, especially those related to nano-scale technology. Modeling the effect of such an influential component has been widely studied from many perspectives. In this article, we propose a new general formula for RLC interconnect circuit model in CMOS technology using the fractional-order

Circuit Theory and Applications
Software and Communications

Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities

Magnesium oxide (MgO) nanoparticles are one of the highly significant compounds in construction. The novelty concentrated on using sol–gel technique coupled with ultrasonication for synthesis of MgO nanoparticles to prevent the agglomeration and its effect on the size was investigated. The synthesized samples were characterized by TGA, DSC, XRD, FTIR, SEM, EDX mapping, DLS, and HRTEM

Healthcare

Performance evaluation and security analysis of ground-to-satellite FSO system with CVQKD protocol

This study evaluates the performance of a secure ground-to-satellite free-space optical (FSO) system using a bipolar pulse amplitude modulation over modulated gamma fading channel. A closed-form expression is derived for the joint probability of a satellite-based continuous-variable quantum key distribution (CV-QKD) protocol that uses dual-threshold detection. Furthermore, to study the system

Software and Communications