banner

Filter by

Fractional order Chebyshev-like low-pass filters based on integer order poles

Chebyshev filter is one of the most commonly used prototype filters that approximate the ideal magnitude response. In this paper, a simple and fast approach to create fractional order Chebyshev-like filter using its integer order poles is discussed. The transfer functions for the fractional filters are developed using the integer order poles from the traditional filter. This approach makes this

Circuit Theory and Applications

Single transistor fractional-order filter using a multi-walled carbon nanotube device

A low-pass fractional-order filter topology based on a single metal oxide semiconductor transistor is presented in this Letter. The filter is realized using a fractional-order capacitor fabricated using multi-walled carbon nanotubes. The electronic tuning capability of the filter’s frequency characteristics is achieved through a biasing current source. Experimental results are presented and

Circuit Theory and Applications

Odd clipping optical orthogonal frequency division multiplexing for VLC system

The Orthogonal Frequency Division Multiplexing (OFDM) has emerged as one of the promising techniques because of its robustness to multipath fading with high-speed data transmission. Classical bipolar OFDM cannot be used in intensity modulated with direct detection (IM/DD) optical communication systems, as visible light communication (VLC), so many optical modulation techniques as asymmetrical

Circuit Theory and Applications
Software and Communications

Tunable fractional-order band-pass filter of order 2α

In this work, a novel implementation of a tunable fractional-order bandpass filter of order 2α is proposed. The transfer function of the presented filter is approximated using the second-order Continued Fraction Expansion (CFE) approximation technique. The filter transfer function is realized using the Inverse Follow the Leader Feedback (IFLF) structure. The Operational Transconductance Amplifiers

Circuit Theory and Applications

Analysis and Design of Fractional-order Low-pass Filter with Three Elements of Independent Orders

This paper studies a new fractional-order form for the active low-pass filter. The form was mainly generated from generalizing an active second-order low-pass filter with three capacitors to the fractional-order domain with three independent orders. The transfer function introduced an extra term in the denominator comprising the third fractional order. The effect of the third fractional-order

Circuit Theory and Applications

Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models

Precise parameter extraction of the bio-impedance models from the measured data is an important factor to evaluate the physiological changes of plant tissues. Traditional techniques employed in the literature for this problem are not robust which reflects on their accuracy. In this paper, the Flower Pollination Algorithm (FPA), the Grey Wolf Optimizer (GWO) and ten of their chaotic variants are

Circuit Theory and Applications

Content Delivery in Mobility-Aware D2D Caching Networks

The massive data exchange between base stations and network backhaul creates a strong overhead on mobile networks, especially at peak times. This motivates researchers to think about the proactive caching concept which depends mainly on caching some of the expected data items during off-peak times. The caching problem consists of two distinct phases, placement phase and delivery phase. In this

Circuit Theory and Applications
Software and Communications

Cad tool for two-digit ternary functions design

Ternary number, which attracts the research attention for its high capacity, has emerged in many applications, recently. Unlike binary numbers, two bit ternary number involves 93 = 729 different functions while two bit binary number involves only 42 = 16 different possible functions. In this paper, a novel automatic software description two bits ternary functions design tool is presented

Circuit Theory and Applications
Software and Communications

Stability analysis of fractional-order Colpitts oscillators

The mathematical formulae of six topologies of fractional-order Colpitts oscillator are introduced in this paper. Half of these topologies are based on MOS transistor, and the other half is based on BJT transistor. The design procedure for all of these topologies is proposed and summarized for each one. Stability analysis is very crucial in oscillators’ design, as oscillators should have its poles

Circuit Theory and Applications

A universal floating fractional-order elements/memelements emulator

In this paper, a generalized floating emulator block is proposed using grounded elements. The proposed emulator is a universal emulator that is used to realize any floating elements such as fractional-order element (FOE) and fractional-order memelements (FOME). Different implementations for the introduced emulator are presented using different active blocks and generalized impedances. The

Circuit Theory and Applications