banner

Filter by

Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations

We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We

Circuit Theory and Applications

Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements

Abstract Pinched hysteresis is considered to be a signature of the existence of memristance. However, here we report on a model that exhibits pinched hysteresis yet it may represent a nonlinear inductor or a nonlinear capacitor (both with quadratic nonlinearity) or a derivative-controlled nonlinear resistor/transconductor. Further, the lobe area of the pinched hysteresis loop in these devices has

Circuit Theory and Applications

Current feedback operational amplifier (CFOA) based fractional order oscillators

This paper presents a study of fractional order oscillators based on current feedback operational amplifiers (CFOA). Two general cases have been discussed for the oscillation frequency and condition with the use of two fractional order elements of different orders. Design procedure for the two general cases is illustrated with numerical discussions. Circuit simulations for some special cases are

Circuit Theory and Applications

Memristor-less current- and voltage-controlled meminductor emulators

This paper introduces two mathematical models of meminductor based on a simple symmetrical double-loop equation with their generic formulas and analysis. Moreover, new circuits based on CCII are developed for emulating the behavior of the current-controlled and voltage-controlled models. The proposed circuits are realized without using a memristor unlike the previous emulators. Finally, the

Circuit Theory and Applications

Alternate versus simultaneous relaying in MIMO cellular relay networks: A degrees of freedom study

In this paper, a two-hop cellular relay network consisting of two source-destination pairs equipped with M antennas is considered where each source is assisted by two decode-and-forward relays operating in half-duplex mode and the relays are equipped with N antennas. The DoF of the system is investigated for both simultaneous and alternate relaying configurations. For each relay configuration, an

Circuit Theory and Applications
Software and Communications

Censoring for improved sensing performance in infrastructure-less cognitive radio networks

Censoring has been proposed to be utilized in wireless distributed detection networks with a fusion center to enhance network performance in terms of error probability in addition to the well- established energy saving gains. In this paper, we further examine the employment of censoring in infrastructure-less cognitive radio networks, where nodes employ binary consensus algorithms to take global

Energy and WaterSoftware and Communications

Maximum throughput opportunistic network coding in Two-Way Relay networks

In this paper, we study Two-Way Relaying (TWR) networks well-known for its throughput merits. In particular, we study the fundamental throughput delay trade-off in TWR networks using opportunistic network coding (ONC). We characterize the optimal ONC policy that maximizes the aggregate network throughput subject to an average packet delay constraint. Towards this objective, first, we consider a

Software and Communications

Impact of the Cd2+ treatment on the electrical properties of Cu2ZnSnSe4 and Cu(In,Ga)Se2 solar cells

Modification of the absorber surface properties by Cd2+ treatment (Cd2+ partial electrolyte) results in the following: formation of Cd(OH)2 on the absorber surface, deposition of thinner chemical bath-deposited CdS buffer layer, and a smaller space charge region. The impact on electrical performances is as follows: decrease of the series resistance (RS), increase of the fill factor, increase of

Influence of Periodic Surface Nanopatterning Profiles on Series Resistance in Thin-Film Crystalline Silicon Heterojunction Solar Cells

In the frame of the development of thin crystalline silicon solar cell technologies, surface nanopatterning of silicon is gaining importance. Its impact on the material quality is, however, not yet fully controlled.We investigate here the influence of surface nanotexturing on the series resistance of a contacting scheme relevant for thin-film crystalline silicon heterojunction solar cells

Energy and Water
Circuit Theory and Applications
Innovation, Entrepreneurship and Competitiveness

Design of Positive, Negative, and Alternating Sign Generalized Logistic Maps

The discrete logistic map is one of the most famous discrete chaotic maps which has widely spread applications. This paper investigates a set of four generalized logistic maps where the conventional map is a special case. The proposed maps have extra degrees of freedom which provide different chaotic characteristics and increase the design flexibility required for many applications such as

Circuit Theory and Applications
Software and Communications
Innovation, Entrepreneurship and Competitiveness