banner

Filter by

Optimal beamforming for MIMO shared relaying in downlink cellular networks with ARQ

In this paper, we study the performance of the downlink of a cellular network with automatic repeat-request (ARQ) and a half duplex decode-and-forward shared relay. In this system, two multiple-input-multiple-output (MIMO) base stations serve two single antenna users. A MIMO shared relay retransmits the lost packets to the target users. First, we study the system with direct retransmission from

Software and Communications

Coverage probability analysis for wireless networks using repulsive point processes

The recent witnessed evolution of cellular networks from a carefully planned deployment to more irregular, heterogeneous deployments of Macro, Pico and Femto-BSs motivates new analysis and design approaches. In this paper, we analyze the coverage probability in cellular networks assuming repulsive point processes for the base station deployment. In particular, we characterize, analytically using

Software and Communications

Transmit and receive cooperative cognition: Protocol design and stability analysis

In this paper, we investigate the stability of a cooperative cognitive system. We propose a cooperative secondary transmitter-receiver system (CSTR), where, the secondary transmitter (ST) and the secondary receiver (SR) increase the spectrum availability for the ST packets by relaying the unsuccessfully transmitted packets of the primary transmitter (PT). We assume receiving nodes with multipacket

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

A 2.5 μwatts two stage wake-up receiver for Wireless Sensor Networks

An ultra low power wake-up receiver for Wireless Sensor Network (WSN) applications is presented. The proposed wake-up receiver is composed of two stages. The first stage is a low-power low-sensitivity stage that acts as a 'sentinel' and continuously monitors the channel, while the second stage is a conventional low-power wake-up receiver. The 2.44GHz two-stage receiver has a sensitivity of -72dBm

Circuit Theory and Applications

Generalized hardware post-processing technique for chaos-based pseudorandom number generators

This paper presents a generalized post-processing technique for enhancing the pseudorandomness of digital chaotic oscillators through a nonlinear XOR-based operation with rotation and feedback. The technique allows full utilization of the chaotic output as pseudorandom number generators and improves throughput without a significant area penalty. Digital design of a third-order chaotic system with

Circuit Theory and Applications

The modified single input Op-Amps memristor based oscillator

This paper introduces the modified single input Op-Amps memristor based oscillator. The oscillator is realized with ideal, LM741 and current feedback (AD844) Op-Amps where memristors replace resistors. The effect of memristor on the oscillation frequency and the oscillation condition that are totally independent is studied. This helped in studying the whole operation regime of the memristor. The

Circuit Theory and Applications

A novel high throughput high resolution two-stage oscillator-based TDC

This paper presents a new technique to reduce the conversion time, hence improve the throughput, of the two-stage Time to Digital Converter (TDC) architecture. An oscillator based TDC is used in the first and second stages. The time residue from the first stage is generated directly after the stop signal is asserted and saved in the form of phase-shift between two oscillating signals. A throughput

Circuit Theory and Applications

Current source based standard-cell model for accurate timing analysis of combinational logic cells

Timing verification is an essential process in nanometer design. Therefore, static timing analysis (STA) is currently the main aspect of performance verification. Traditional STA is based on lookup tables with input slew and output load capacitance. It is becoming insufficient to accurately characterize many significant aspects of the conventional cell delays models, such as: the process

Circuit Theory and Applications

Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators

Memristive oscillators are a novel topic in nonlinear circuit theory, where the behavior of the reactive elements is emulated by the memristor. This paper presents symmetric and asymmetric memristive two-gate relaxation oscillators. First, the analysis of the two series memristors is introduced to study the effect of changing their polarities, as well as the mobility factor to be used in the two

Circuit Theory and Applications

Mathematical modeling of Upflow Anaerobic Sludge Blanket reactor in domestic wastewater treatment

This paper introduces a dynamic model to adequately describe an Upflow Anaerobic Sludge Blanket (UASB) reactor. Some available models of a UASB reactor are discussed in order to modify their drawbacks and propose a new improved model with less complexity and more reliability. The developed model is a combination of two recent models introduced in Sweden. According to this model, a UASB rector is

Circuit Theory and Applications
Mechanical Design