Breadcrumb
Feature selection in computer aided diagnostic system for microcalcification detection in digital mammograms
In this paper an approach is proposed to develop a computer-aided diagnosis (CAD) system that can be very helpful for radiologist in diagnosing microcalcifications' patterns in digitized mammograms earlier and faster than typical screening programs and showed the efficiency of feature selection on the CAD system. The proposed method has been implemented in four stages: (a) the region of interest (ROI) selection of 32x32 pixels size which identifies clusters of microcalcifications, (b) the feature extraction stage is based on the wavelet decomposition of locally processed image (region of
Extreme Points Derived Confidence Map as a Cue for Class-Agnostic Interactive Segmentation Using Deep Neural Network
To automate the process of segmenting an anatomy of interest, we can learn a model from previously annotated data. The learning-based approach uses annotations to train a model that tries to emulate the expert labeling on a new data set. While tremendous progress has been made using such approaches, labeling of medical images remains a time-consuming and expensive task. In this paper, we evaluate the utility of extreme points in learning to segment. Specifically, we propose a novel approach to compute a confidence map from extreme points that quantitatively encodes the priors derived from
Controlled alternate quantum walks based privacy preserving healthcare images in Internet of Things
The development of quantum computers and quantum algorithms conveys a challenging scenario for several cryptographic protocols due to the mathematical scaffolding upon which those protocols have been built. Quantum walks constitute a universal quantum computational model which is widely used in various fields, including quantum algorithms and cryptography. Quantum walks can be utilized as a powerful tool for the development of modern chaos-based cryptographic applications due to their nonlinear dynamical behavior and high sensitivity to initial conditions. In this paper, we propose new
Features selection for building an early diagnosis machine learning model for Parkinson's disease
In this work, different approaches were evaluated to optimize building machine learning classification models for the early diagnosis of the Parkinson disease. The goal was to sort the medical measurements and select the most relevant parameters to build a faster and more accurate model using feature selection techniques. Decreasing the number of features to build a model could lead to more efficient machine learning algorithm and help doctors to focus on what are the most important measurements to take into account. For feature selection we compared the Filter and Wrapper techniques. Then we
Combined regional and spatio-temporal approach improves hepatic tumors classification in Multiphase CT
In this work, we investigate the effect of using spatio-tepmoral features on a regional basis on the liver focal lesions classification performance in the multiphase CT images. Texture, Density, and temporal feature set and their different combinations along spatial partitioned ROI were investigated to better characterizing five hepatic pathologies from multiphase contrast-enhanced CT scans. Embedded feature selection followed by decision tree ensembles classification with ten folds cross-validation were employed to classify a total of 180 ROI includes normal tissues, cyst, haemangioma
Multi-center, Multi-vendor, and Multi-disease Cardiac Image Segmentation Using Scale-Independent Multi-gate UNET
Heart segmentation in Cardiac MRI images is a fundamental step to quantify myocardium global function. In this paper, we introduce a pipeline for heart localization and segmentation that is fast and robust even in the apical slices that have small myocardium. Also, we propose an enhancement to the popular U-Net architecture for segmentation. The proposed method utilizes the aggregation of different feature scales from the image by using the inception block along with the multi-gate block that propagates the multi-scale context of the supplied data where the heart is subject to changes in scale
The case for docker in multicloud enabled bioinformatics applications
The introduction of next generation sequencing technologies did not bring only huge amounts of biological data but also highly sophisticated and versatile analysis workflows and systems. These new challenges require reliable and fast deployment methods over high performance servers in the local infrastructure or in the cloud. The use of virtualization technology has provided an efficient solution to overcome the complexity of deployment procedures and to provide a safe personalized execution box. However, the performance of applications running in virtual machines is worse than that of those
Insilico Codon Bias Correction for Transgenic Biological Protein Sequences for Vaccine Production
Codon optimization is primarily used in enhancing the levels of protein expression in the host species. Each species has its own codon usage bias, which represents the codons abundance frequency in that species. Using the host usage profile contributes to personalize the synthesis of the DNA vaccines that can achieve highly active vectors the host cells. For optimizing protein expression levels in a particular host, the genetic code sequence needs correction of codon frequency bias to match the expression of host codon landscape rather than the donating organism profile. In this work, we have
TCAIOSC: Application Code Conversion
Traditional mobile application development requires going through multiple development cycles in order for an application to work on different platforms. In cross-platform development, the application goes through only one development cycle to be deployed in multiple environments. Various cross-platform methodologies were explored to make it easy for developers to deploy their apps; one of which is the Trans-Compiler methodology. This paper discusses advances to a cross-platform solution, TCAIOSC, which converts Android projects to iOS, inquiring into further aspects of Android-To-iOS
MC-GenomeKey: A multicloud system for the detection and annotation of genomic variants
Background: Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the
Pagination
- Previous page ‹‹
- Page 10
- Next page ››