banner

Filter by

Biohybrid soft robots, E-skin, and bioimpedance potential to build up their applications: A review

Soft Robotics is a new approach towards better human-robot interaction and biomimicry in the robotics field. Its integration with biological materials (Biohybrid soft robotics) is one of the topics being focused on in the soft robotics research in the last fifteen years. The motive for this approach is to combine the best of biological and artificial systems. In this article, Biohybrid soft robots

Healthcare
Circuit Theory and Applications

Path Planning Control for 3-Omni Fighting Robot Using PID and Fuzzy Logic Controller

This paper addresses a comparison between some control methods of three Omni wheels firefighting robot due to the variety of maneuverability. To achieve path planning for firefighting robot to reach a specific point with the shortest path, a kinematics model of omni wheel robot is applied with some control algorithms based on PID controller, Fuzzy logic controller and self-tuned PID using fuzzy

Circuit Theory and Applications

Design and Implementation of a Ball and Beam PID Control System Based on Metaheuristic Techniques

The paper introduces a comparative analysis between three meta-heuristic techniques in the optimization of Proportional-Integral-Derivative (PID) controller for a cascaded control of a ball and beam system. The meta-heuristic techniques presented in this study are Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC) and Bat Algorithm Optimization (BAO). The model uses a DC motor with

Circuit Theory and Applications

Experimental investigation of chitosan film reinforced by chitin fibers and chitin whiskers extracted from shrimp shell waste

An investigation has been made to predict the effects of fore body and after body chitin and chitosan are natural polymers that have many advantages, such as biocompatibility, biodegradability, healing acceleration, non-toxicity, and anti-infection properties. However, the use of pure chitosan films in many applications is limited due to their poor tensile strength and elasticity. Nevertheless

Energy and Water

Effect of solar canals on evaporation, water quality, and power production: An optimization study

Both energy and availability of water with good quality are essential for the well-being of humans. Thus, it is very important to study the parameters that would affect water quality, so as to come up with mitigation measures if water quality would be at risk or negatively affected. Moreover, it is very important to always search for new energy resources, especially if they are renewable. This

Energy and Water

PID Controller for 2-DOFs Twin Rotor MIMO System Tuned with Particle Swarm Optimization

This paper presents the modelling and control of a 2-DOFs Twin rotor multi input multi output (MIMO) system which is a laboratory setup resembling the dynamics of a helicopter. In this paper, the system modelling process is done using the common conventional mathematical model based on Euler-Lagrange method. The transfer functions of the model are used in the different tuning methods to reach the

Circuit Theory and Applications

Controllable synthesis of Co1−x MxFe2O4 nanoparticles (M = Zn, Cu, and Mn; x = 0.0 and 0.5) by cost-effective sol–gel approach: analysis of structure, elastic, thermal, and magnetic properties

Substitutions of cations were considered to be the main way for improving the performance of ferrite nanocrystalline structures. In this paper, non-magnetic and magnetic ions were conducted to substitute cobalt spinel ferrite nanoparticles CoFe2O4 NPs (CFO NPs). The studied Co1−xMxFe2O4; M = Zn, Cu, and Mn; x = 0.00, and 0.50) samples were synthesized through a cost-effective sol–gel technique

Healthcare

Novel (MnO2/Al) thermite colloid: an opportunity for energetic systems with enhanced performance

The current study highlights a sustainable fabrication of nanoscopic thermite (MnO2/Al) system, composed of MnO2 nanoparticles with an average particle size of about 20.8 nm prepared by a hydrothermal processing technique. In addition, it contains aluminium particles having a combustion heat of 32,000 J/g, which is very attractive for advanced energetic systems. Plate-like aluminium nanoparticles

Energy and Water

Steering Control for Autonomous Vehicles Using PID Control with Gradient Descent Tuning and Behavioral Cloning

In this paper we implement and evaluate two ways of controlling the steering angle of an autonomous vehicle, PID control with manual tuning followed by gradient descent algorithm tuning-which is able to enhance the performance through self-adjusting the controller parameters-and using supervised machine learning through the end-to-end deep learning for self-driving car which implement

Mechanical Design

Optimal Design of PID Controller for 2-DOF Drawing Robot Using Bat-Inspired Algorithm

Tuning process which is used to find the optimum values of the proportional integral derivative (PID) parameters, can be performed automatically using meta-heuristics algorithms such as BA (Bat Algorithm), PSO (Particle Swarm Optimization) and ABC (Artificial Bee Colony). This paper presented a theoretical and practical implementation of a drawing robot using BA to tune the PID controller

Circuit Theory and Applications