banner

Filter by

Generalized Fully Adjustable Structure for Emulating Fractional-Order Capacitors and Inductors of Orders less than Two

A novel scheme suitable for the emulation of fractional-order capacitors and inductors of any order less than 2 is presented in this work. Classically, fractional-order impedances are characterized in the frequency domain by a fractional-order Laplacian of the form s± α with an order 0 < α< 1. The ideal inductor and capacitor correspond, respectively, to setting α= ± 1. In the range 1 < α< 2

Circuit Theory and Applications

Communication-The Ragone Plot of Supercapacitors under Different Loading Conditions

The power-energy performance of supercapacitors is usually visualized by the Ragone plot of (gravimetric or volumetric) energy density vs power density. The energy is commonly computed from E = CV2/2, and the power from P = E/Δt, which assume RCbased models. In this study, we investigate the energy-power profiles of two commercial supercapacitors discharged with three different types of loads: (i)

Energy and Water
Circuit Theory and Applications

Quantification of memory in fractional-order capacitors

In this study we quantify and interpret the inherent memory in fractional-order capacitors when subjected to constant current charging/discharging waveforms. This is done via a finite difference approximation of the fractional order rate equation I(t) = Cαdαv(t)/dtα (0 le; α ≤ 1) relating current to voltage in these devices. It is found that as the fractional exponent α decreases, the weight of

Circuit Theory and Applications

Visible Light Communications Localization Error Enhancement using Parameter Relaxation

In this paper, we propose applying a parameter relaxation technique to the location estimation algorithm that is based on the Received Signal Strength (RSS) of Visible Light Communications (VLC). A hybrid system of localization balancing is introduced, where the localization algorithm is developed with and without this efficient parameter relaxation. The results show that applying the parameter

Software and Communications

Effective capacity optimization for cognitive radio networks under primary QoS provisioning

Cognitive radios have emerged as a key enabler for opportunistic spectrum access, in order to tackle the wireless spectrum scarcity and under utilization problems over the past two decades. In this paper, we aim to enhance the secondary user (SU) performance while maintaining the desired average packet delay for the primary user (PU). In particular, we investigate the trade-off between delay

Software and Communications

Generic evaluation of FSO system over Málaga turbulence channel with MPPM and non-zero-boresight pointing errors

Free space optical (FSO) communication channels are affected by fluctuations in irradiance due to atmospheric turbulence and pointing errors. Recently, a generalized statistical model knows as Málaga (M) was developed to describe irradiance fluctuations of the beam propagating through a turbulent medium. In this paper, an approximate finite-series probability density function (PDF) for composite M

Software and Communications

Generation of OFC by Self-Phase Modulation and Multiple Laser Sources in HNLF

Self-Phase Modulation (SPM) is a non-linear phenomenon relating to the self-induced phase shift encountered by the optical field during its transmission into the optical fiber. It is the most popular technique for generating an optical frequency comb (OFC) with different frequency spacing values. The SPM is regulated by many parameters such as fiber length, input optical power, and the non

Software and Communications

Intelligent Hybrid Approach for Feature Selection

The issues of multitude of noisy, irrelevant, misleading features, and the capability to tackle inaccurate and inconsistent data in real world topics are the justification to turn into one of the most significant needs for feature selection. This paper proposes an intelligent hybrid approach using Rough Set Theory (RST), Chaos Theory and Binary Grey Wolf Optimization Algorithm (CBGWO) for feature

Artificial Intelligence

Logistics 4.0 technologies in agriculture systems: Potential impacts in the sdg

Agriculture systems in developing countries have been characterized by a low technology level. The principal reasons are the high cost of technologies and the difficulties to integrate the systems with the dynamics of the current business world. However, these kinds of systems have been gaining importance, mainly, for achieving the Sustainable Development Goals. This sector is relevant mainly in
Innovation, Entrepreneurship and Competitiveness

Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grünwald–Letnikov’s approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular

Circuit Theory and Applications