banner

Filter by

Numerical simulation of Oldroyd-B fluid with application to hemodynamics

Oldroyd-B viscoelastic fluid is numerically simulated using the stabilized Galerkin least squares finite element method. The instabilities due to the connective nature of the Oldroyd-B model is treated using the discrete viscous elastic split stress method. The model is used to study the behavior of the flow of blood through an abdominal aortic segment. The results show that the viscoelastic

Energy and Water

A study on the feasibility of producing polylactic acid from cotton and coffee waste in Egypt

The amount of solid waste is growing In Egypt. It is estimated to be 20 million tons annually according to the Ministry of environment forecasts. The typical competence of collection in urban areas signifies 40 – 80%, although the middling proficiency of assortment processes and transport in rustic areas signifies 40 % which is considered hazardous for communal health and environment deprived of

Energy and Water

Design and application examples of CMOS fractional-order differentiators and integrators

Reduced complexity CMOS fractional-order differentiator and integrator building blocks are introduced in this work, based on 2 nd -order integer-order transfer function approximations. These blocks are then used for implementing fractional-order filters as well as a Leaky-Integrate-and-Fire Mihalas-Niebur neuron model. Cascading 1 st and 2 nd -order blocks to obtain 5 th -order integer-order

Circuit Theory and Applications

Engineered Nanomaterials as Potential Candidates for HIV Treatment: Between Opportunities and Challenges

Nanomaterials have received considerable attention due to their unique properties; they have high surface area compared to volume ratio, giving them superior chemical, optical and thermal characteristics. Nanomaterials have also both diagnostic and therapeutic applications. In this mini review, we are highlighting valuable data about human immunodeficiency virus (HIV), its relationship with cancer

Energy and Water

Heating and Freezing Injury to Plant Tissues and Their Effect on Bioimpedance: Experimental Study

Electrochemical Impedance Spectroscopy (EIS) has been used as a technique for the assessment of food attributes. This paper discusses the effect of injuries caused by heating and freezing treatments to plant's bioimpedance. Unlike other studies to these kinds of injuries, experiments are carried out on the whole fruit using non-invasive electrodes keeping the plant tissues unharmed. Moreover, one

Circuit Theory and Applications

Memristor-based quinary half adder

This paper theorizes the possibilities of generalizing a memristor based ternary adder circuit, to a memristor based multi-valued logic adder. The proposition tries to achieve the theoretical advantages of processing different numbering systems, increasing the density, and decreasing the processing time, by utilizing the memristor properties and dynamics. This is done using a memristor cell based

Circuit Theory and Applications

Synchronization and FPGA realization of fractional-order Izhikevich neuron model

This paper generalizes the Izhikevich neuron model in the fractional-order domain for better modeling of neuron dynamics. Accurate and computationally efficient numerical techniques such as non-standard finite difference (NSFD) scheme is used to solve the neuron system in the fractional-order domain for different cases. Neuron synchronization plays an important role in the process of information

Circuit Theory and Applications

Network Coded Cooperation Receiver with Analog XOR Mapping for Enhanced BER

In this paper, we propose a novel physical layer decoding technique for Device-to-Device Network Coded Cooperation (NCC) receivers in the Two Way Relay Channel (TWRC) scenario. The proposed technique is efficiently applicable either when Channel State Information (CSI) are available at the receiver or not. It first employs XOR arithmetic analog mapping to extract a distorted version of the

Software and Communications
Innovation, Entrepreneurship and Competitiveness

Self-balancing Robot Modeling and Control Using Two Degree of Freedom PID Controller

This paper represents the control of a two-wheel self-balancing robot based on the theory of controlling the inverted pendulum. This paper dividing the system modeling into two main parts. The first part is the dc motor and the second part are the whole mechanical design and its characteristics as a function in the motor speed and the torque depending on the system, creating two control closed

Mechanical Design

Design of fopid controller for a dc motor using approximation techniques

This paper introduces a study of fractional-order PID (FOPID) controller applied to a DC motor. The idea is to control the motor speed using the FOPID and compare it with the conventional PID controller. Two approximation techniques are employed to realize the FOPID, which are Matsuda and Oustaloup, each with order four. Different responses are depicted for various fractional orders. A specific

Circuit Theory and Applications
Mechanical Design