banner

Filter by

IoT Agile Framework Enhancement

Internet of Things (IoT) is considered as a trend nowadays. Devices connected to the internet interact with surrounding; this poses strong challenges in handling big data with a certain level of security. In this paper IoT devices will be divided in to two categories high vulnerability devices and low vulnerability devices. The classification depends on the ease of attacks. In order to ensure the

Artificial Intelligence
Circuit Theory and Applications
Software and Communications

Security and Efficiency of Feistel Networks Versus Discrete Chaos for Lightweight Speech Encryption

This paper compares examples of non-chaotic and chaotic ciphers from the viewpoint of their suitability for speech encryption, especially in real-time and lightweight cipher systems. The non-chaotic encryption scheme depends on a modified Generalized Feistel Network (GFN), Linear Feedback Shift Register (LFSR) and Substitution Boxes (S-Boxes). The chaotic encryption scheme utilizes a generalized

Circuit Theory and Applications

Extraction of Phase Information from Magnitude-Only Bio-impedance Measurements Using a Modified Kramers–Kronig Transform

The need for portable and low-cost bio-impedance analyzers that can be deployed in field studies has significantly increased. Due to size and power constraints, reducing the hardware in these devices is crucial and most importantly is removing the need for direct phase measurement. In this paper a new magnitude-only technique based on modified Kramers–Kronig transforms is proposed and tested

Circuit Theory and Applications
Agriculture and Crops

Optimal uplink and downlink resource allocation for wireless powered cellular networks

In this paper, we characterize optimal resource allocation for the uplink and downlink of wireless powered cellular networks (WPCNs). In particular, we investigate a time-slotted WPCN, where a hybrid access point (HAP) is in charge of energy replenishing of M cellular users (CUs), along with transmission/reception of information to/from them. Unlike prior works, which give attention to information

Software and Communications

Chaos and bifurcation in controllable jerk-based self-excited attractors

In the recent decades, utilization of chaotic systems has flourished in various engineering applications. Hence, there is an increasing demand on generalized, modified and novel chaotic systems. This chapter combines the general equation of jerk-based chaotic systems with simple scaled discrete chaotic maps. Two continuous chaotic systems based on jerk-equation and discrete maps with scaling

Circuit Theory and Applications

Dynamic behavior and damping characteristics of carbon black polymer composites at high strain rates

The dynamic stress–strain behavior and the damping characteristics of carbon black (CB)/polymer composites at high strain rates are measured using the split Hopkinson pressure bar. These characteristics are determined for polyurethane impregnated with 20% CB nanoparticles and compared with those of pristine polyurethane at strain rates ranging between 2,400 and 7,000 s−1. The obtained results

Energy and Water

Cache-Aware Source Coding

In this letter, we show that Huffman's source coding method is not optimal for cache-aided networks. To that end, we propose an optimal algorithm for the cache-aided source coding problem. We define cache-aided entropy, which represents a lower bound on the average number of transmitted bits for cached-aided networks. A sub-optimal low-complexity cache-aided coding algorithm is presented. In

Software and Communications

Cache-aided fog radio access networks with partial connectivity

Centralized coded caching and delivery is studied for a partially-connected fog radio access network (F-RAN), whereby a set of H edge nodes (ENs) (without caches), connected to a cloud server via orthogonal fronthaul links, serve K users over the wireless edge. The cloud server is assumed to hold a library of N files, each of size F bits; and each user, equipped with a cache of size MF bits, is

Software and Communications

Cooperative D2D communications in the uplink of cellular networks with time and power division

Cooperative device-to-device (D2D) communication is proposed as a promising technology to improve the spectral efficiency in crowded communication networks. In this paper, we consider a transmitter-receiver pair, operating in the D2D transmission mode, overlaying the cellular network. The D2D transmitter (DT) acts as a relay for the undelivered packets of cellular user equipment (CUE). We consider

Software and Communications

Cache-aided heterogeneous networks: Coverage and delay analysis

This paper characterizes the performance of a generic K-tier cache-aided heterogeneous network (CHN), in which the base stations (BSS) across tiers differ in terms of their spatial densities, transmission powers, pathloss exponents, activity probabilities conditioned on the serving link and placement caching strategies. We consider that each user connects to the BS which maximizes its average

Software and Communications