banner

Publications

Filter by

Fractional controllable multi-scroll V-shape attractor with parameters effect

This paper is an extension of V-shape multi-scroll butterfly attractor in the fractional-order domain. The system complexity is increased by the new dynamics introduced by the fractional operator which make it more suitable for random signal generator. The effect of system parameters on controlling the attractor shape is investigated and compared with the integer order attractor. Maximum Lyapunov

Circuit Theory and Applications

FPGA implementation of two fractional order chaotic systems

This paper discusses the FPGA implementation of the fractional-order derivative as well as two fractional-order chaotic systems where one of them has controllable multi-scroll attractors. The complete hardware architecture of the Grünwald-Letnikov (GL) differ-integral is realized with different memory window sizes. As an application of the proposed circuit, a complete fractional-order FPGA

Circuit Theory and Applications

Biomedical image encryption based on double-humped and fractional logistic maps

This paper presents a secured highly sensitive image encryption system suitable for biomedical applications. The pseudo random number generator of the presented system is based on two discrete logistic maps. The employed maps are: the double humped logistic map as well as the fractional order logistic map. The mixing of the map parameters and the initial conditions x0, offers a great variety for

Circuit Theory and Applications
Software and Communications

Chaos synchronisation of continuous systems via scalar signal

By analyzing the issue of chaos synchronization in the literature, it can be noticed the lack of a general approach, which would enable any type of synchronization to be achieved. Similarly, there is the lack of a unified method for synchronizing both continuous-time and discrete-time systems via a scalar signal. This paper and the companion one [1] aim to bridge these two gaps by presenting a

Circuit Theory and Applications

PREFACE

[No abstract available]

Circuit Theory and Applications

Preface

[No abstract available]

Circuit Theory and Applications

On the analysis of current-controlled fractional-order memristor emulator

In this paper, a current-controlled fractional-order memristor model and its emulator are proposed. The emulator is built using two second generation current conveyor (CCII) and fractional-order capacitor. It is shown that the effect of the fractional order is clearly noticeable in the circuit response. PSPICE simulations are introduced for different values of the fractional order showing

Circuit Theory and Applications

Generalized fractional logistic map encryption system based on FPGA

This paper introduces the design of a generalized fractional order logistic map suitable for pseudorandom number key generators and its application in an encryption system based on FPGA. The map is generalized through two parameters (a,b) where complete analysis of their effect on the map is detailed, which gives more control on the map chaotic regions. The vertical map and the zooming map

Circuit Theory and Applications

Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency

This paper presents a generalization of six well-known quadrature third-order oscillators into the fractional-order domain. The generalization process involves replacement of three integer-order capacitors with fractional-order ones. The employment of fractional-order capacitors allows a complete tunability of oscillator frequency and phase. The presented oscillators are implemented with three

Circuit Theory and Applications

Generalized family of fractional-order oscillators based on single CFOA and RC network

This paper presents a generalized family of fractional-order oscillators based on single CFOA and RC network. Five RC networks are investigated with their general state matrix, and design equations. The general oscillation frequency, condition and the phase difference between the oscillatory outputs are introduced in terms of the fractional order parameters. They add extra degrees of freedom which

Circuit Theory and Applications