banner

Publications

Filter by

On The Optimization of Fractional Order Low-Pass Filters

This paper presents three different optimization cases for normalized fractional order low-pass filters (LPFs) with numerical, circuit and experimental results. A multi-objective optimization technique is used for controlling some filter specifications, which are the transition bandwidth, the stop band frequency gain and the maximum allowable peak in the filter pass band. The extra degree of

Circuit Theory and Applications

Aging effect on apples bio-impedance using AD5933

In this paper, the effect of the fruits aging on bio-impedance is experimentally studied. Bio-impedance analysis, as accurate and fast method is used to investigate and monitor group of apples properties during aging. This method provides an alternative method for investigating apples physical properties that are highly related to chemical properties. AD5933 impedance analyzer chip within the

Circuit Theory and Applications
Software and Communications

Fractional order oscillators with single non-zero transmission matrix element

This paper presents a study of fractional order oscillator design based on a matrix. The presented oscillator consists of a general two port network and three impedances. Only two port with single element in its transmission matrix is discussed which gives four possible networks. Different combinations for one element have been investigated. The impedances associated with the studied networks are

Circuit Theory and Applications

Fractional order oscillators based on operational transresistance amplifiers

In this paper, a general analysis of the fractional order operational transresistance amplifiers (OTRA) based oscillator is presented and validated through eight different circuits which represent two classifications according to the number of OTRAs. The general analytical formulas of the oscillation frequency, condition as well as the phase difference are illustrated for each case and summarized

Circuit Theory and Applications

Generalized fractional logistic map suitable for data encryption

This paper presents a generalized form of the fractional logistic map. Two general parameters a and b are added to the classical fractional logistic equation. The effect of such parameters on the map is studied explicitly, in combination with the fractional order parameter α, which offers an extra degree of freedom increasing the design flexibility and adding more controllability on the design

Circuit Theory and Applications

Generalized delayed logistic map suitable for pseudo-random number generation

This paper presents the generalization of a delayed version of the logistic map. The effect of the added two general parameters is studied, which offers the option of having three different maps. The dynamic behavior of the vertical, zooming and the general map is analyzed. The study of the fixed points, stability ranges and bifurcation diagram of the delayed logistic map at hand is detailed in

Circuit Theory and Applications