Strain correction in interleaved strain-encoded (SENC) cardiac MR
The strain encoding (SENC) technique directly encodes regional strain of the heart into the acquired MR images and produces two images with two different tunings so that longitudinal strain, on the short-axis view, or circumferential strain on the long-axis view, are measured. Interleaving acquisition is used to shorten the acquisition time of the two tuned images by 50%, but it suffers from errors in the strain calculations due to inter-tunings motion of the heart. In this work, we propose a method to correct for the inter-tunings motion by estimating the motion-induced shift in the spatial frequency of the encoding pattern, which depends on the strain rate. Numerical data was generated to test the proposed method and real images of human subjects were used for validation. The proposed method corrected the measured strain values so they became nearly identical to the original ones. The results show an improvement in strain calculations so as to relax the imaging constraints on spatial and temporal resolutions and improve image quality. © 2010 Copyright SPIE - The International Society for Optical Engineering.