banner

Filter by

Ternary Functions Design Using Memristive Threshold Logic

Memristive threshold logic (MTL) concept is emerged in many circuits to enable high-performance systems in terms of power, energy, area, and delay. This paper proposes a systematic method for building two-bit ternary number functions based on the MTL concept. The proposed method is applied to build the basic ternary arithmetic operations. The implementation of two-bit adder and multiplier is

Circuit Theory and Applications

A Neural Network-Based VLC Indoor Positioning System for Moving Users

In this paper, we present an indoor visible light communication (VLC) system to estimate the position of a moving user. This system uses two approaches based on received signal strength, trilateration estimation, and neural network estimation. In the VLC system, each transmitter sends its position information via light. A photo-detector receiver supported with the moving user is used to receive

Software and Communications

Automatic mri breast tumor detection using discrete wavelet transform and support vector machines

The human right is to live a healthy life free of serious diseases. Cancer is the most serious disease facing humans and possibly leading to death. So, a definitive solution must be done to these diseases, to eliminate them and also to protect humans from them. Breast cancer is considered being one of the dangerous types of cancers that face women in particular. Early examination should be done

Artificial Intelligence
Healthcare

Nonlinear single-input single-output model-based estimation of cardiac output for normal and depressed cases

Mental depression is associated with an increased risk of cardiovascular mortality, thus provisioning generic simple nonlinear mathematical models for normal and depressed cases using only heart rate (HR) or stroke volume (SV) as a single input to produce cardiac output (CO) as a single output instead of using both HR and SV as two inputs. The proposed models could be in the future an effective

Artificial Intelligence
Healthcare

Medical nanorobots: Design, applications and future challenges

Following the current technological revolution, the concept of emerging fields and getting a common benefit becomes a bright way to follow. Going deeper in nanotechnology, nanorobotics has been the glimpse of hope in many fields; particularly, in the medical field. Nanorobotics applications in medicine are divided into two main categories, diagnosis and treatment, and extensive efforts have been

Healthcare
Mechanical Design

A current-mode system to self-measure temperature on implantable optoelectronics

Background: One of the major concerns in implantable optoelectronics is the heat generated by emitters such as light emitting diodes (LEDs). Such devices typically produce more heat than light, whereas medical regulations state that the surface temperature change of medical implants must stay below + 2 °C. The LED's reverse current can be employed as a temperature-sensitive parameter to measure

Healthcare
Circuit Theory and Applications

Design of fractional-order differentiator-lowpass filters for extracting the R peaks in ECG signals

An implementation of a fractional-order differentiator-lowpass filter is presented in this work, which is constructed from Operational Transconductance Amplifiers as active cells. This offers the benefits of electronic tuning and, also, of monolithic implementation. The presented scheme has been employed for the extraction of the R peaks in electrocardiogram signals due to its efficiency for

Healthcare
Circuit Theory and Applications

Numerical simulation of blood flow in abdominal aortic aneurysms: Effects of blood shear-thinning and viscoelastic properties

In this study numerical simulation of blood flow in abdominal aortic aneurysms is presented. The novelty in this study is the consideration of the blood viscoelastic properties to account for the presence of red blood cells in addition to the shear-thinning behavior. The Oldroyd-B model is used to account for the viscoelasticity while the Carreau–Yasuda model is used to represent the shear

Healthcare

Energy Efficiency Optimization through RRHs ON/OFF Switching Technique in C-RAN

Energy efficiency (EE) is one of the main parameters to be considered in recent networks targeting green technology. Our system is based on cloud radio access networks and it consists of a macro base-station and many small remote radio heads (RRHs). We solve an optimization problem to improve the system's EE through resource allocation and power control. We also reduce the power consumption

Software and Communications

Effect of wall thinning on the Shakedown Interaction Diagrams of 90-degree back-to-Back Bends Subjected to Simultaneous Steady Internal Pressures and Cyclic In Plane Bending Moments

This research studies the effect of wall thinning on generated shakedown (SD) interaction diagrams of pressurized low-carbon steel 90-degree (90-Deg) back-to-back (B2B) bends. More precisely, the SD limit moments are determined for various steady internal pressure spectra thus generating the targeted SD boundaries. The SD limit moments are computed utilizing a direct non-cyclic technique termed

Mechanical Design